Nonlinear Partial Differential Equations

 →  NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

Nonlinear Partial Differential Equations

Código: 369
Acronimo: NPDE
Tipo: Grupo consolidado
Email:
Categorías: PE1 Mathematics
MTM Matemáticas
Coordinador:
Miembros:
Enlaces:

Lineas de investigación:

Ecuaciones en Derivadas Parciales Análisis Numérico



Proyectos más relevantes:

MTM2016-80474-P, Problemas elípticos y parabólicos basados en potencias del Laplaciano, IPs: F. Soria y A. Primo; financiado por MINECO, (49.400 euros); periodo 2016-19 CONFLEX PROJECT: Control of flexible structures and fluid-structure interactions, Horizon 2020: Marie Skodowska-Curie Innovative Training Networks, Proposal number: SEP-210412102, Type of action: MSCA-ITN-ETN (European Training Networks), (UAM: 287.872,96 Euros). 2017-10-01 – 2021-09-30. PI: George Weiss, Tel Aviv Univ., Israel. (https://twitter.com/conflex2017) ERC advG DyCon-Dynamic Control: Octubre 2016-Septiembre 2021. ERC Advanced Grant 2015 Grant Agreement 694126 – DYCON, Dynamic Control-DYCON. Duración: 01-01-2017; 31-12-2021. IP: Enrique Zuazua. Institutions involved. DeustoTech-Bilbao and UAM-Madrid.



Publicaciones más relevantes:

[1] Zuazua, E. Large time control and turnpike properties for wave equations, Annual Reviews in Control, 44 (2017) 199-210 [2] Loheac, J.; Trelat, E.; Zuazua, E.; Minimal controllability time for the heat equation under unilateral state or control constraints. Math. Models Methods Appl. Sci. 27 (2017), no. 9, 1587-1644 [3] Escudero, C.; Gazzola, F.; Peral, I. Global existence versus blow-up results for a fourth order parabolic PDE involving the Hessian. J. Math. Pures Appl. (9) 103 (2015), no. 4, 924-957 [4] Barrios, B.; Peral, I.; Soria, F.; Valdinoci, E. A Widder’s type theorem for the heat equation with nonlocal diffusion. Arch. Ration. Mech. Anal. 213 (2014), no. 2, 629-650 [5]Caffarelli, L.; Soria, F.; Vázquez, JL Regularity of solutions of the fractional porous medium flow. J. Eur. Math. Soc. (JEMS) 15 (2013), no. 5, 1701-1746

© 2021 Fundación de la Universidad Autónoma de Madrid